Dehydrogenation of methanol by vanadium oxide and hydroxide cluster cations in the gas phase.

نویسندگان

  • Sandra Feyel
  • Ludwig Scharfenberg
  • Charles Daniel
  • Hans Hartl
  • Detlef Schröder
  • Helmut Schwarz
چکیده

Bare vanadium oxide and hydroxide cluster cations, V(m)O(n)+ and V(m)O(n-1) (OH)+ (m = 1-4, n = 1-10), generated by electrospray ionization, were investigated with respect to their reactivity toward methanol using mass spectrometric techniques. Several reaction channels were observed, such as abstraction of a hydrogen atom, a methyl radical, or a hydroxymethyl radical, elimination of methane, and adduct formation. Moreover, dehydrogenation of methanol to generate formaldehyde was found to occur via four different pathways. Formaldehyde was released as a free molecule either upon transfer of two hydrogen atoms to the cluster or upon transfer of an oxygen atom from the cluster to the neutral alcohol concomitant with elimination of water. Further, formaldehyde was attached to V(m)O(n)+ upon loss of H2 or neutral water to produce the cation V(m)O(n)(OCH(2))+ or V(m)O(n-1) (OCH(2))+, respectively. A reactivity screening revealed that only high-valent vanadium oxide clusters are reactive with respect to H2 uptake, oxygen transfer, and elimination of H2O, whereas smaller and low-valent cluster cations are capable of dehydrogenating methanol via elimination of H2. For comparison, the reactivity of methanol with the corresponding hydroxide cluster ions, V(m)O(n-1) (OH)+, was studied also, for which dominant pathways lead to both condensation and association products, i.e., generation of the ions V(m)O(n-1) (OCH(3))+ and V(m)O(n-1) (OH)(CH(3)OH)+, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propane oxidative dehydrogenation over vanadium oxide nanostructures supported on porous graphene prepared by hydrothermal method

In this study at first, in laboratory, three types of vanadium oxide were produced by using porous graphene and amine framework in hydrothermal method nanostructures such as: vanadium oxide - octadecyl amine - graphene, vanadium oxide - dodecyl amine - graphene and vanadium oxide – aniline - graphene (V-ODA-G، V-DDA-G، V-A-G). Then their structures and functions in propane dehydrogenation react...

متن کامل

A Gas Phase Study of the Reactivity of VmOnHO Clusters

A quadrupole-based mass spectrometer equipped with an electrospray ionization source was used to examine the gas-phase reactivity of various vanadium-oxide cations which mediate the oxidative dehydrogenation (ODH) of small alkenes and alkanes. For ion generation, a solution of V6O7(OMe)12 dissolved in deuterated methanol was subjected electrospray under very harsh conditions to obtain smaller v...

متن کامل

Vanadium Oxide Supported on Al-modified Titania Nanotubes for Oxidative Dehydrogenation of Propane

In this study, characterization of vanadia supported on Al-modified titania nanotubes (TiNTs) synthesized by the alkaline hydrothermal treatment of TiO2 powders has been reported. A promising catalyst for oxidative dehydrogenation (ODH) of propane was prepared via the incipient wetness impregnation method. The morphology and crystalline structure of TiNTs were characterized by transmission elec...

متن کامل

Gas-Phase Reactions of Cationic Vanadium-Phosphorus Oxide Clusters with C2Hx (x=4, 6): A DFT-Based Analysis of Reactivity Patterns

The reactivities of the adamantane-like heteronuclear vanadium-phosphorus oxygen cluster ions [V(x)P(4-x)O(10)](.+) (x=0, 2-4) towards hydrocarbons strongly depend on the V/P ratio of the clusters. Possible mechanisms for the gas-phase reactions of these heteronuclear cations with ethene and ethane have been elucidated by means of DFT-based calculations; homolytic C-H bond activation constitute...

متن کامل

Oxidation of methanol to formaldehyde on supported vanadium oxide catalysts compared to gas phase molecules.

The oxidation of methanol to formaldehyde on silica supported vanadium oxide is studied by density functional theory. For isolated vanadium oxide species silsesquioxane-type models are adopted. The first step is dissociative adsorption of methanol yielding CH3O(O=)V(O-)2 surface complexes. This makes the O=V(OCH3)3 molecule a suited model system. The rate-limiting oxidation step involves hydrog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 111 17  شماره 

صفحات  -

تاریخ انتشار 2007